186 research outputs found

    Spatial ecology of loggerhead turtles: Insights from stable isotope markers and satellite telemetry

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAim Using a combination of satellite telemetry and stable isotope analysis (SIA), our aim was to identify foraging grounds of loggerhead turtles (Caretta caretta) at important rookeries in the Mediterranean, examine foraging ground fidelity, and across 25 years determine the proportion of nesting females recruiting from each foraging region to a major rookery in Cyprus. Location Mediterranean Sea. Methods Between 1993 and 2018, we investigated the spatial ecology of loggerhead turtles from rookeries in Cyprus and Greece using satellite telemetry (n = 55 adults) and SIA of three elements (n = 296). Results Satellite telemetry from both rookeries revealed the main foraging areas as the Adriatic region (Cyprus: 4% of individuals, Greece: 55%), Tunisian Plateau (Cyprus: 16%, Greece: 40%) and the eastern Mediterranean (Cyprus: 80%, Greece: 5%). Combining satellite telemetry and SIA allowed 64% of all nesting females to be assigned to; the Adriatic region (Cyprus: 2%, Greece: 38.5%), Tunisian Plateau (Cyprus: 47%, Greece: 38.5%) and the eastern Mediterranean (Cyprus: 51%, Greece: 23%), which are markedly different to proportions obtained using satellite telemetry. The proportion of the Cyprus nesting cohort using each foraging region did not change significantly, with the exception that individuals foraging in the Adriatic region are only present in the Cyprus nesting population from 2012. Repeat satellite tracking (n = 3) and temporal consistency in isotope ratios (n = 36) of Cyprus females, strongly suggest foraging ground fidelity over multiple decades. Main conclusions This study demonstrates the advantages of combining satellite telemetry and SIA to investigate spatial ecology at a population level. The importance of the Tunisian Plateau for foraging is demonstrated. This study indicates that females generally show high fidelity to foraging grounds and shows a potential recent shift to foraging in the Adriatic region for Cyprus females, while the importance of other regions persists across decades, thus providing baselines to develop and assess conservation strategies.Natural Environment Research Council (NERC

    On arrangement and expression of love poem in Kokin-wakashu

    Get PDF
    <p>Annual integrated net flux with rain components, <i>F</i><sub><i>T</i></sub> (Tg C yr<sup>-1</sup>) from 1999–2006, for each of the ocean basins, and the impact of each rain component on <i>F</i><sub><i>T</i></sub> (Tg C yr<sup>-1</sup>), where <i>F</i><sub><i>T</i></sub> = <i>F</i><sub><i>DIC</i></sub> + <i>F</i><sub><i>k-rain</i></sub> and all-rain = <i>F</i><sub><i>T</i></sub><i>−F</i><sub><i>ref</i></sub>.</p

    Terahertz two-cylinder waveguide coupler for transverse-magnetic and transverse-electric mode operation

    Get PDF
    We report the coupling and guiding of broadband terahertz radiation using a two-cylinder waveguide coupler. For the transverse electromagnetic TEM (TM0) geometry, the two opposing metal cylinders exhibit an amplitude transmission comparable to that of the cylindrical silicon lens coupled parallel-plate waveguide, but in the transverse-electric orientation the two-cylinder coupler shows much better amplitude transmission.Peer reviewedElectrical and Computer Engineerin

    Data-based estimates of the ocean carbon sink variability – First results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM)

    Get PDF
    Using measurements of the surface-ocean CO2 partial pressure (pCO2) and 14 different pCO2 mapping methods recently collated by the Surface Ocean pCO2 Mapping intercomparison (SOCOM) initiative, variations in regional and global sea–air CO2 fluxes are investigated. Though the available mapping methods use widely different approaches, we find relatively consistent estimates of regional pCO2 seasonality, in line with previous estimates. In terms of interannual variability (IAV), all mapping methods estimate the largest variations to occur in the eastern equatorial Pacific. Despite considerable spread in the detailed variations, mapping methods that fit the data more closely also tend to agree more closely with each other in regional averages. Encouragingly, this includes mapping methods belonging to complementary types – taking variability either directly from the pCO2 data or indirectly from driver data via regression. From a weighted ensemble average, we find an IAV amplitude of the global sea–air CO2 flux of 0.31 PgC yr−1 (standard deviation over 1992–2009), which is larger than simulated by biogeochemical process models. From a decadal perspective, the global ocean CO2 uptake is estimated to have gradually increased since about 2000, with little decadal change prior to that. The weighted mean net global ocean CO2 sink estimated by the SOCOM ensemble is −1.75 PgC yr−1 (1992–2009), consistent within uncertainties with estimates from ocean-interior carbon data or atmospheric oxygen trend

    Foraging ecology of Mediterranean juvenile loggerhead turtles: insights from C and N stable isotope ratios

    Get PDF
    Bycatch is one of the key threats to juvenile marine turtles in the Mediterranean Sea. As fishing methods are regional or habitat specific, the susceptibility of marine turtles may differ according to inter- and intra-population variations in foraging ecology. An understanding of these variations is necessary to assess bycatch susceptibility and to implement region-specific management. To determine if foraging ecology differs with region, sex, and size of juvenile loggerhead turtles (Caretta caretta), stable isotope analysis of carbon and nitrogen was performed on 171 juveniles from a range of foraging regions across the central and eastern Mediterranean Sea. Isotope ratios differed with geographical region, likely due to baseline variations in δ13C and δ15N values. The absence of sex-specific differences suggests that within an area, all comparably sized animals likely exploit similar foraging strategies, and therefore, their susceptibility to fisheries threats will likely be similar. The isotope ratios of juveniles occupying the North East Adriatic and North Levantine basin increased with size, potentially due to increased consumption of more prey items at higher trophic levels from a more neritic source. Isotope ratios of juveniles with access to both neritic and oceanic habitats did not differ with size which is consistent with them consuming prey items from both habitats interchangeably. With foraging habitats exploited differently among size classes in a population, the susceptibility to fisheries interactions will likely differ with size; therefore, region-specific management approaches will be needed

    Salinity from Space Unlocks Satellite-Based Assessment of Ocean Acidification

    Get PDF
    Approximately a quarter of the carbon dioxide (CO2) that we emit into the atmosphere is absorbed by the ocean. This oceanic uptake of CO2 leads to a change in marine carbonate chemistry resulting in a decrease of seawater pH and carbonate ion concentration, a process commonly called “Ocean Acidification”. Salinity data are key for assessing the marine carbonate system, and new space-based salinity measurements will enable the development of novel space-based ocean acidification assess- ment. Recent studies have highlighted the need to develop new in situ technology for monitoring ocean acidification, but the potential capabilities of space-based measurements remain largely untapped. Routine measurements from space can provide quasi-synoptic, reproducible data for investigating processes on global scales; they may also be the most efficient way to monitor the ocean surface. As the carbon cycle is dominantly controlled by the balance between the biological and solubility carbon pumps, innovative methods to exploit existing satellite sea surface temperature and ocean color, and new satellite sea surface salinity measurements, are needed and will enable frequent assessment of ocean acidification parameters over large spatial scales

    Satellites will address critical science priorities for quantifying ocean carbon

    Get PDF
    The ability to routinely quantify global carbon dioxide (CO2) absorption by the oceans has become crucial: it provides a powerful constraint for establishing global and regional carbon (C) budgets, and enables identification of the ecological impacts and risks of this uptake on the marine environment. Advances in understanding, technology, and international coordination have made it possible to measure CO2 absorption by the oceans to a greater degree of accuracy than is possible in terrestrial landscapes. These advances, combined with new satellite‐based Earth observation capabilities, increasing public availability of data, and cloud computing, provide important opportunities for addressing critical knowledge gaps. Furthermore, Earth observation in synergy with in‐situ monitoring can provide the large‐scale ocean monitoring that is necessary to support policies to protect ocean ecosystems at risk, and motivate societal shifts toward meeting C emissions targets; however, sustained effort will be needed

    Foraging ecology of Mediterranean juvenile loggerhead turtles: insights from C and N stable isotope ratios

    Get PDF
    Bycatch is one of the key threats to juvenile marine turtles in the Mediterranean Sea. As fishing methods are regional or habitat specific, the susceptibility of marine turtles may differ according to inter- and intra-population variations in foraging ecology. An understanding of these variations is necessary to assess bycatch susceptibility and to implement region-specific management. To determine if foraging ecology differs with region, sex, and size of juvenile loggerhead turtles (Caretta caretta), stable isotope analysis of carbon and nitrogen was performed on 171 juveniles from a range of foraging regions across the central and eastern Mediterranean Sea. Isotope ratios differed with geographical region, likely due to baseline variations in δ13C and δ15N values. The absence of sex-specific differences suggests that within an area, all comparably sized animals likely exploit similar foraging strategies, and therefore, their susceptibility to fisheries threats will likely be similar. The isotope ratios of juveniles occupying the North East Adriatic and North Levantine basin increased with size, potentially due to increased consumption of more prey items at higher trophic levels from a more neritic source. Isotope ratios of juveniles with access to both neritic and oceanic habitats did not differ with size which is consistent with them consuming prey items from both habitats interchangeably. With foraging habitats exploited differently among size classes in a population, the susceptibility to fisheries interactions will likely differ with size; therefore, region-specific management approaches will be needed

    Carbon on the Northwest European Shelf: Contemporary Budget and Future Influences

    Get PDF
    A carbon budget for the northwest European continental shelf seas (NWES) was synthesized using available estimates for coastal, pelagic and benthic carbon stocks and flows. Key uncertainties were identified and the effect of future impacts on the carbon budget were assessed. The water of the shelf seas contains between 210 and 230 Tmol of carbon and absorbs between 1.3 and 3.3 Tmol from the atmosphere annually. Off-shelf transport and burial in the sediments account for 60–100 and 0–40% of carbon outputs from the NWES, respectively. Both of these fluxes remain poorly constrained by observations and resolving their magnitudes and relative importance is a key research priority. Pelagic and benthic carbon stocks are dominated by inorganic carbon. Shelf sediments contain the largest stock of carbon, with between 520 and 1600 Tmol stored in the top 0.1 m of the sea bed. Coastal habitats such as salt marshes and mud flats contain large amounts of carbon per unit area but their total carbon stocks are small compared to pelagic and benthic stocks due to their smaller spatial extent. The large pelagic stock of carbon will continue to increase due to the rising concentration of atmospheric CO2, with associated pH decrease. Pelagic carbon stocks and flows are also likely to be significantly affected by increasing acidity and temperature, and circulation changes but the net impact is uncertain. Benthic carbon stocks will be affected by increasing temperature and acidity, and decreasing oxygen concentrations, although the net impact of these interrelated changes on carbon stocks is uncertain and a major knowledge gap. The impact of bottom trawling on benthic carbon stocks is unique amongst the impacts we consider in that it is widespread and also directly manageable, although its net effect on the carbon budget is uncertain. Coastal habitats are vulnerable to sea level rise and are strongly impacted by management decisions. Local, national and regional actions have the potential to protect or enhance carbon storage, but ultimately global governance, via controls on emissions, has the greatest potential to influence the long-term fate of carbon stocks in the northwestern European continental shelf

    OceanSODA-UNEXE: a multi-year gridded Amazon and Congo River outflow surface ocean carbonate system dataset

    Get PDF
    Large rivers play an important role in transferring water and all of its constituents, including carbon in its various forms, from the land to the ocean, but the seasonal and inter-annual variations in these riverine flows remain unclear. Satellite Earth observation datasets and reanalysis products can now be used to observe synoptic-scale spatial and temporal variations in the carbonate system within large river outflows. Here, we present the University of Exeter (UNEXE) Satellite Oceanographic Datasets for Acidification (OceanSODA) dataset (OceanSODA-UNEXE) time series, a dataset of the full carbonate system in the surface water outflows of the Amazon (2010–2020) and Congo (2002–2016) rivers. Optimal empirical approaches were used to generate gridded total alkalinity (TA) and dissolved inorganic carbon (DIC) fields in the outflow regions. These combinations were determined by equitably evaluating all combinations of algorithms and inputs against a reference matchup database of in situ observations. Gridded TA and DIC along with gridded temperature and salinity data enable the calculation of the full carbonate system in the surface ocean (which includes pH and the partial pressure of carbon dioxide, pCO2). The algorithm evaluation constitutes a Type-A uncertainty evaluation for TA and DIC, in which model, input and sampling uncertainties are considered. Total combined uncertainties for TA and DIC were propagated through the carbonate system calculation, allowing all variables to be provided with an associated uncertainty estimate. In the Amazon outflow, the total combined uncertainty for TA was 36 µmol kg−1 (weighted root-mean-squared difference, RMSD, of 35 µmol kg−1 and weighted bias of 8 µmol kg−1 for n = 82), whereas it was 44 µmol kg−1 for DIC (weighted RMSD of 44 µmol kg−1 and weighted bias of −6 µmol kg−1 for n = 70). The spatially averaged propagated combined uncertainties for the pCO2 and pH were 85 µatm and 0.08, respectively, where the pH uncertainty was relative to an average pH of 8.19. In the Congo outflow, the combined uncertainty for TA was identified as 29 µmol kg−1 (weighted RMSD of 28 µmol kg−1 and weighted bias of 6 µmol kg−1 for n = 102), whereas it was 40 µmol kg−1 for DIC (weighted RMSD of 37 µmol kg−1 and weighted bias of −16 µmol kg−1 for n = 77). The spatially averaged propagated combined uncertainties for pCO2 and pH were 74 µatm and 0.08, respectively, where the pH uncertainty was relative to an average pH of 8.21. The combined uncertainties in TA and DIC in the Amazon and Congo outflows are lower than the natural variability within their respective regions, allowing the time-varying regional variability to be evaluated. Potential uses of these data would be the assessment of the spatial and temporal flow of carbon from the Amazon and Congo rivers into the Atlantic and the assessment of the riverine-driven carbonate system variations experienced by tropical reefs within the outflow regions. The data presented in this work are available at https://doi.org/10.1594/PANGAEA.946888 (Sims et al., 2023).</p
    corecore